publications from MACH3CANCER Accelerator Partners
•Kalita R, Flanagan WM, Lightley J, Kumar S, Alexandrov Y, Garcia E, et al. Single‐shot phase contrast microscopy using polarisation‐resolved differential phase contrast. Journal of Biophotonics. 2021 Dec 1;14(12).https://doi.org/10.1002/jbio.202100144
•Lightley J, Kumar S, Garcia E, Alexandrov Y, Dunsby C, Mark, et al. Robust, single-shot, optical autofocus system utilizing cylindrical lenses to provide high precision and long range of operation. Cold Spring Harbor Laboratory. 2022 Jul 16;https://doi.org/10.1101/2022.07.14.498938
•Hong W, Sparks H, Dunsby C. Alignment and Characterisation of Remote-Refocusing Systems. arXiv. 2023 Mar 31; https://doi.org/10.48550/arxiv.2304.00075
•Culley J, Stephen P, Dawson J, Carragher N. Patient derived glioma stem cell spheroid reporter assays for live cell high content analysis. SLAS Discovery. 2022 Sep 1;28(2):13–9. https://doi.org/10.1016/j.slasd.2022.09.002
•Peirsman A, Blondeel E, Ahmed T, Anckaert J, Audenaert D, Boterberg T, et al. MISpheroID: a knowledgebase and transparency tool for minimum information in spheroid identity. Nature Methods . 2021 Nov 1;18(11):1294–303. https://doi.org/10.1038/s41592-021-01291-4
•Vries, M.D. L. Dent, N. Curry, L. Rowe-Brown, V. Bousgouni, A. Tyson, C. Dunsby, et al 3D single-cell shape analysis using geometric deep learning. bioRxiv. 2022 Jun 17; https://doi.org/10.1101/2022.06.17.496550
•Kalita R, Flanagan WM, Lightley J, Kumar S, Alexandrov Y, Garcia E, et al. Single‐shot phase contrast microscopy using polarisation‐resolved differential phase contrast. Journal of Biophotonics. 2021 Dec 1;14(12).https://doi.org/10.1002/jbio.202100144
•Lightley J, Kumar S, Garcia E, Alexandrov Y, Dunsby C, Mark, et al. Robust, single-shot, optical autofocus system utilizing cylindrical lenses to provide high precision and long range of operation. Cold Spring Harbor Laboratory. 2022 Jul 16;https://doi.org/10.1101/2022.07.14.498938
•Hong W, Sparks H, Dunsby C. Alignment and Characterisation of Remote-Refocusing Systems. arXiv. 2023 Mar 31; https://doi.org/10.48550/arxiv.2304.00075
•Culley J, Stephen P, Dawson J, Carragher N. Patient derived glioma stem cell spheroid reporter assays for live cell high content analysis. SLAS Discovery. 2022 Sep 1;28(2):13–9. https://doi.org/10.1016/j.slasd.2022.09.002
•Peirsman A, Blondeel E, Ahmed T, Anckaert J, Audenaert D, Boterberg T, et al. MISpheroID: a knowledgebase and transparency tool for minimum information in spheroid identity. Nature Methods . 2021 Nov 1;18(11):1294–303. https://doi.org/10.1038/s41592-021-01291-4
•Vries, M.D. L. Dent, N. Curry, L. Rowe-Brown, V. Bousgouni, A. Tyson, C. Dunsby, et al 3D single-cell shape analysis using geometric deep learning. bioRxiv. 2022 Jun 17; https://doi.org/10.1101/2022.06.17.496550
•Kalita R, Flanagan WM, Lightley J, Kumar S, Alexandrov Y, Garcia E, et al. Single‐shot phase contrast microscopy using polarisation‐resolved differential phase contrast. Journal of Biophotonics. 2021 Dec 1;14(12).https://doi.org/10.1002/jbio.202100144
•Lightley J, Kumar S, Garcia E, Alexandrov Y, Dunsby C, Mark, et al. Robust, single-shot, optical autofocus system utilizing cylindrical lenses to provide high precision and long range of operation. Cold Spring Harbor Laboratory. 2022 Jul 16;https://doi.org/10.1101/2022.07.14.498938
•Hong W, Sparks H, Dunsby C. Alignment and Characterisation of Remote-Refocusing Systems. arXiv. 2023 Mar 31; https://doi.org/10.48550/arxiv.2304.00075
•Culley J, Stephen P, Dawson J, Carragher N. Patient derived glioma stem cell spheroid reporter assays for live cell high content analysis. SLAS Discovery. 2022 Sep 1;28(2):13–9. https://doi.org/10.1016/j.slasd.2022.09.002
•Peirsman A, Blondeel E, Ahmed T, Anckaert J, Audenaert D, Boterberg T, et al. MISpheroID: a knowledgebase and transparency tool for minimum information in spheroid identity. Nature Methods . 2021 Nov 1;18(11):1294–303. https://doi.org/10.1038/s41592-021-01291-4
•Vries, M.D. L. Dent, N. Curry, L. Rowe-Brown, V. Bousgouni, A. Tyson, C. Dunsby, et al 3D single-cell shape analysis using geometric deep learning. bioRxiv. 2022 Jun 17; https://doi.org/10.1101/2022.06.17.496550
•Kalita R, Flanagan WM, Lightley J, Kumar S, Alexandrov Y, Garcia E, et al. Single‐shot phase contrast microscopy using polarisation‐resolved differential phase contrast. Journal of Biophotonics. 2021 Dec 1;14(12).https://doi.org/10.1002/jbio.202100144
•Lightley J, Kumar S, Garcia E, Alexandrov Y, Dunsby C, Mark, et al. Robust, single-shot, optical autofocus system utilizing cylindrical lenses to provide high precision and long range of operation. Cold Spring Harbor Laboratory. 2022 Jul 16;https://doi.org/10.1101/2022.07.14.498938
•Hong W, Sparks H, Dunsby C. Alignment and Characterisation of Remote-Refocusing Systems. arXiv. 2023 Mar 31; https://doi.org/10.48550/arxiv.2304.00075
•Culley J, Stephen P, Dawson J, Carragher N. Patient derived glioma stem cell spheroid reporter assays for live cell high content analysis. SLAS Discovery. 2022 Sep 1;28(2):13–9. https://doi.org/10.1016/j.slasd.2022.09.002
•Peirsman A, Blondeel E, Ahmed T, Anckaert J, Audenaert D, Boterberg T, et al. MISpheroID: a knowledgebase and transparency tool for minimum information in spheroid identity. Nature Methods . 2021 Nov 1;18(11):1294–303. https://doi.org/10.1038/s41592-021-01291-4
•Vries, M.D. L. Dent, N. Curry, L. Rowe-Brown, V. Bousgouni, A. Tyson, C. Dunsby, et al 3D single-cell shape analysis using geometric deep learning. bioRxiv. 2022 Jun 17; https://doi.org/10.1101/2022.06.17.496550
•Kalita R, Flanagan WM, Lightley J, Kumar S, Alexandrov Y, Garcia E, et al. Single‐shot phase contrast microscopy using polarisation‐resolved differential phase contrast. Journal of Biophotonics. 2021 Dec 1;14(12).https://doi.org/10.1002/jbio.202100144
•Lightley J, Kumar S, Garcia E, Alexandrov Y, Dunsby C, Mark, et al. Robust, single-shot, optical autofocus system utilizing cylindrical lenses to provide high precision and long range of operation. Cold Spring Harbor Laboratory. 2022 Jul 16;https://doi.org/10.1101/2022.07.14.498938
•Hong W, Sparks H, Dunsby C. Alignment and Characterisation of Remote-Refocusing Systems. arXiv. 2023 Mar 31; https://doi.org/10.48550/arxiv.2304.00075
•Culley J, Stephen P, Dawson J, Carragher N. Patient derived glioma stem cell spheroid reporter assays for live cell high content analysis. SLAS Discovery. 2022 Sep 1;28(2):13–9. https://doi.org/10.1016/j.slasd.2022.09.002
•Peirsman A, Blondeel E, Ahmed T, Anckaert J, Audenaert D, Boterberg T, et al. MISpheroID: a knowledgebase and transparency tool for minimum information in spheroid identity. Nature Methods . 2021 Nov 1;18(11):1294–303. https://doi.org/10.1038/s41592-021-01291-4
•Vries, M.D. L. Dent, N. Curry, L. Rowe-Brown, V. Bousgouni, A. Tyson, C. Dunsby, et al 3D single-cell shape analysis using geometric deep learning. bioRxiv. 2022 Jun 17; https://doi.org/10.1101/2022.06.17.496550
•Lightley.J*, S. Kumar*, LimM.Q. , Garcia. E, FGörlitz.F. , Alexandrov. Y, Steele. E, Parrado .T, Hollick .C, Graham.J, McNeish .I, Neil .M.A.A*, Dunsby*.C, and French .P.M.W openFrame: a modular, sustainable, open microscopy platform with single-shot, dual-axis optical autofocus module providing high precision and long range of operation. Journal of Microscopy (2023) https://doi.org/10.1111/jmi.13219
CONFERENCES ATTENDED BY MACH3CANCER Accelerator Partners
•High-speed 3D and high-content light-sheet fluorescence microscopy
C. Dunsby
Invited oral presentation, BPS Pharmacology – Complex 3D models: translation from the bench to the bed, 2021
•Dual-view oblique plane microscopy (dOPM)
H. Sparks, L. Dent, D. Marks, J. Almagro, M. Smith, E. Garcia, I. McNeish, C. Bakal, A. Behrens, G. Salbreux, C. Dunsby
Oral presentation, OSA Biophotonics Congress – Optics in the Life Sciences, 2021
•Oblique Plane Microscopy
C. Dunsby
Invited oral presentation, Eurobioimaging Virtual Pub, 2021
•High-speed 3D and high-content light-sheet fluorescence microscopy
C. Dunsby
Invited oral presentation, ELRIG Pharmaceutical Flow Cytometry & Imaging, 2021
•High-speed 3D and high-content light-sheet fluorescence microscopy
C. Dunsby
Invited oral presentation, UKRMP High Throughput Screening Workshop, London, 2022
•High-speed and high-content light-sheet fluorescence microscopy
C. Dunsby
Invited oral presentation, SPIE Frontiers in Biophotonics and Imaging, Birmingham, 2022
•Oblique Plane Microscopy and its Applications
C. Dunsby
Invited oral presentation, INSERM, Bordeaux, 2022
•Open-Source High Content Analysis Platform Including Automated Multiwell Plate Super-Resolved Microscopy
J. Lightley, S. Kumar, E. Garcia, Y. Alexandrov, Mi Qi Lim, M. Boland, F. Görlitz, R. Kalita, V. Bousgouni, C. Bakal, E. Cohen, S. Flaxman, C. Hollick, T. Parrado, J. Graham, I. McNeish, C. Dunsby, M.A.A. Neil & P.M.W. French
Presention, Focus on Microscopy Online Conference, 2022
•Single-shot semi-quantitative phase contrast microscopy using polarisation-resolved differential phase contrast
W. Flanagan, Huihui Liu, S. Kumar, R. Kalita, K. Valand, A. Le Marois, J. Lightley, E. Garcia1, Y. Alexandrov, M. Hintze, E. Sahai, M. Barkoulas, C. Dunsby & P.M.W. French
Presented, Focus on Microscopy Online Conference, 2022
•Open-source microscopy for fluorescence lifetime imaging, super-resolved imaging and high content analysis
P. French
Invited talk, ICO25-OWLS Conference, Dresden, 2022
•openFrame: an open, modular platform for microscopy and high content analysis
P. French
Invited talk, EuroBioimaging Open Hardware in Microscopy, virtual workshop, 2022
•Dual-view oblique plane microscopy for high-content imaging of complex and heterogeneous 3D cancer models
L. Dvinskikh, H. Sparks, N. Gustafsson, N. Curry, Y. Alexandrov, M. Lee, J. Culley, T. Suckert, C. Ratcliffe, A. Lemarois, L. Dent, M. De Vries, J. Almagro, V. Bousgouni, A. Lladó Equisoain, N. Giakoumakis, L. Bardia, C Cortina, C. Bakal, A. Behrens, E. Batlle, J. Colombelli, N. Carragher, P. M. W. French, E. Sahai, C. Dunsby
Poster presentation, Focus on Microscopy, Porto, 2023
•Dual-view oblique plane microscopy for multi-well plate time-lapse 3D imaging assays in cancer research
H. Sparks, L. Dent, C.D.H. Ratcliffe, N. Gustafsson, N. Curry, E. Sahai, C. Bakal, C. Dunsby
Oral presentation, Optica Biophotonics Congress: Optics in the Life Sciences, Vancouver, 2023
•High-speed 3D light-sheet microscopy
C. Dunsby
Invited presentation, NOTICE meeting in Glasgow, 2023
•High speed and high content light sheet fluorescence microscopy
H. Sparks
Invited presentation, SLAS Building Biology in 3D Symposium, 2023
•Implementing advanced microscopy modalities to increase content and throughput – while widening access
P. French
Invited talk, Society for Laboratory Automation and Screening (SLAS) annual meeting 2023, San Diego, USA
•Open-source multibeam multiphoton multiwell plate microscope
W. Flanagan, S. Kumar, C. Hollick, T. Parrado, J. Graham, E. Garcia1,3, D. Marks, J. Lightley, Y. Alexandrov, L. Dent, I.A. McNeish, C. Bakal, C. Dunsby, M.A.A. Neil & P.M.W. French,
Invited presentation, Focus on Microscopy, Porto, 2023
•Single-shot semi-quantitative phase contrast microscopy
H. Liu, K. Valand, S. Kumar, W. Flanagan, A. Le Marois, J. Lightley, E. Garcia, Y. Alexandrov, E. Sahai2, C. Dunsby & P.M.W. French
Invited presentation, Focus on Microscopy, Porto, 2023
•openScopes: an open, modular platform for microscopy and high content analysis
P. French
Invited talk, Theo Murphy meeting on Open, reproducible hardware for microscopy, Glasgow, 2023
Background publications from MACH3CANCER Accelerator Partners
Imperial College London
•Di Antonio M, Ponjavic A, Radzevičius A, Ranasinghe RT, Catalano M, Zhang X, et al. Single-molecule visualization of DNA G-quadruplex formation in live cells. cells. Nature Chemistry. 2020 Jul 20;12(9):832–7. https://doi.org/10.1038/s41557-020-0506-4
•Garcia E, Guo W, Kumar S, Görlitz F, Sparks H, Alexandrov Y, et al. FLIM, FRET and high content analysis. Multiphoton Microscopy in the Biomedical Sciences XX. 2020 Mar 2;11244. https://doi.org/10.1117/12.2547517
•Macintyre G, Goranova TE, De Silva D, Ennis D, Piskorz AM, Eldridge M, et al. Copy number signatures and mutational processes in ovarian carcinoma. Nature Genetics. 2018 Aug 13;50(9):1262–70. https://doi.org/10.1038/s41588-018-0179-8
•Messal HA, Alt S, Ferreira RMM, Gribben C, Wang VM-Y, Cotoi CG, et al. Tissue curvature and apicobasal mechanical tension imbalance instruct cancer morphogenesis. Nature. 2019 Jan 30;566(7742):126–30. https://doi.org/10.1038/s41586-019-0891-2
•Minard A, Liano D, Wang X, Di Antonio M. The unexplored potential of quinone methides in chemical biology. Bioorganic & Medicinal Chemistry. 2019 Jun;27(12):2298–305. https://doi.org/10.1016/j.bmc.2019.04.001
•Minard A, Morgan D, Raguseo F, Di Porzio A, Liano D, Jamieson AG, et al. A short peptide that preferentially binds c-MYC G-quadruplex DNA. Chemical Communications. 2020;56(63):8940–3. https://doi.org/10.1039/D0CC02954H
•Sparks H, Kondo H, Hooper S, Munro I, Kennedy G, Dunsby C, et al. Heterogeneity in tumor chromatin-doxorubicin binding revealed by in vivo fluorescence lifetime imaging confocal endomicroscopy. Nature Communications. 2018 Jul 9;9(1). http://dx.doi.org/10.1038/s41467-018-04820-6
•Walton J, Blagih J, Ennis D, Leung E, Dowson S, Farquharson M, et al. CRISPR/Cas9-Mediated Trp53 and Brca2 Knockout to Generate Improved Murine Models of Ovarian High-Grade Serous Carcinoma. Cancer Research. 2016 Aug 16;76(20):6118–29. https://doi.org/10.1158/0008-5472.CAN-16-1272
•Wang VM-Y, Ferreira RMM, Almagro J, Evan T, Legrave N, Zaw Thin M, et al. CD9 identifies pancreatic cancer stem cells and modulates glutamine metabolism to fuel tumour growth. Nature Cell Biology. 2019 Nov;21(11):1425–35. https://doi.org/10.1038/s41556-019-0407-1
The Francis Crick Institute
•Cheung EC, DeNicola GM, Nixon C, Blyth K, Labuschagne CF, Tuveson DA, et al. Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer. Cancer Cell. 2020 Feb 10;37(2):168–182.e4. https://doi.org/10.1016/j.ccell.2019.12.012
•Ege N, Dowbaj AM, Jiang M, Howell M, Hooper S, Foster C, et al. Quantitative Analysis Reveals that Actin and Src-Family Kinases Regulate Nuclear YAP1 and Its Export. Cell Systems. 2018 Jun;6(6):692-708.e13. https://doi.org/10.1016/j.cels.2018.05.006
•Fisch D, Yakimovich A, Clough B, Wright J, Bunyan M, Howell M, et al. Defining host–pathogen interactions employing an artificial intelligence workflow. eLife. 2019 Feb 12;8. https://doi.org/10.7554/eLife.40560.001
•Hirata E, Girotti MR, Viros A, Hooper S, Spencer-Dene B, Matsuda M, et al. Intravital Imaging Reveals How BRAF Inhibition Generates Drug-Tolerant Microenvironments with High Integrin β1/FAK Signaling. Cancer Cell. 2015 Apr;27(4):574–88.https://doi.org/10.1016/j.ccell.2015.03.008
•Hirata E, Yukinaga H, Kamioka Y, Arakawa Y, Miyamoto S, Okada T, et al. In vivo fluorescence resonance energy transfer imaging reveals differential activation of Rho-family GTPases in glioblastoma cell invasion. Journal of Cell Science. 2012 Feb 15;125(4):858–68. https://doi.org/10.1242/jcs.089995 Epub 2012 Mar 7.
•Labuschagne CF, Cheung EC, Blagih J, Domart M-C, Vousden KH. Cell Clustering Promotes a Metabolic Switch that Supports Metastatic Colonization. Cell Metabolism. 2019 Oct;30(4):720-734.e5. https://doi.org/10.1016/j.cmet.2019.07.014
•Morales Torres C, Wu MY, Hobor S, Wainwright EN, Martin MJ, Patel H, et al. Selective inhibition of cancer cell self-renewal through a Quisinostat-histone H1.0 axis. Nature Communications. 2020 Apr 14;11(1):1–15. https://doi.org/10.1038/s41467-020-15615-z
•Seifert H, Hirata E, Gore M, Khabra K, Messiou C, Larkin J, et al. Extrinsic factors can mediate resistance to BRAF inhibition in central nervous system melanoma metastases. Pigment Cell & Melanoma Research. 2015 Nov 3;29(1):92–100. https://doi.org/10.1111/pcmr.12424
The Institute of Cancer Research
•Bakal C, Aach J, Church G, Perrimon N. Quantitative Morphological Signatures Define Local Signaling Networks Regulating Cell Morphology. Science. 2007 Jun 22;316(5832):1753–6. https://doi.org/10.1126/science.1140324
•Cooper S, Sadok A, Bousgouni V, Bakal C. Apolar and polar transitions drive the conversion between amoeboid and mesenchymal shapes in melanoma cells. Molecular Biology of the Cell. 2015 Nov 5;26(22):4163–70. https://doi.org/10.1091/mbc.E15-06-0382
The University of Edinburgh
•Carragher N, Piccinini F, Tesei A, Jr OJT, Bickle M, Horvath P. Concerns, challenges and promises of high-content analysis of 3D cellular models. Nature Reviews Drug Discovery. 2018 Jul 6;17(8):606–606. https://doi.org/10.1038/nrd.2018.99
•Dawson JC, Serrels B, Byron A, Muir MT, Makda A, García-Muñoz A, et al. A Synergistic Anticancer FAK and HDAC Inhibitor Combination Discovered by a Novel Chemical–Genetic High-Content Phenotypic Screen. Molecular Cancer Therapeutics. 2019 Nov 29;19(2):637–49. https://doi.org/10.1158/1535-7163.MCT-19-0330
IRB Barcelona
•Batlle E, Clevers H. Cancer stem cells revisited. Nature medicine. 2017;23(10):1124–34. https://doi.org/10.1038/nm.4409
•Cortina C, Turon G, Stork D, Hernando‐Momblona X, Sevillano M, Aguilera M, et al. A genome editing approach to study cancer stem cells in human tumors. EMBO Molecular Medicine. 2017 May 3;9(7):869–79. https://doi.org/10.15252/emmm.201707550
•Morral C, Stanisavljevic J, Hernando-Momblona X, Mereu E, Álvarez-Varela A, Cortina C, et al. Zonation of Ribosomal DNA Transcription Defines a Stem Cell Hierarchy in Colorectal Cancer. Cell Stem Cell. 2020 Jun;26(6):845-861.e12. https://doi.org/10.1016/j.stem.2020.04.012
•Tosi S, Bardia L, Filgueira MJ, Calon A, Colombelli J. LOBSTER: an environment to design bioimage analysis workflows for large and complex fluorescence microscopy data. Bioinformatics. 2019 Dec 20;36(8):2634–5. https://doi.org/10.1093/bioinformatics/btz945